### DEPARTMENT OF THE ENVIRONMENT

Restoration Plans for Non-tidal Sediment and PCBs in Patuxent River Watersheds
August 27, 2019

### PRINCE GEORGE'S COUNTY, MARYLAND

Welcome

from

### Jerry Maldonado

Section Head, Environmental Programs, Stormwater Management Division



### PURPOSE OF MEETING

- Review why watershed restoration plans are needed in Prince George's County.
- Inform the public of contents of the draft watershed restoration plans for Sediment and PCBs for the Patuxent River watershed.
- Answer questions on the draft Watershed Restoration Plan.



Photo Credit: M-NCPPC / Cassi Hayden

### COUNTY GOALS AND OBJECTIVES

- Protect human health, safety, and property.
- Protect, restore, and enhance habitat for healthier ecosystems.
- Improve quality of life and recreational opportunities.
- Conduct restoration efforts with a balanced implementation of BMPs and programmatic actions.
- Integrate watershed protection/restoration into policy-making.
- Increase awareness and stewardship by the public and policymakers.
- Support compliance with regional, state, and federal regulatory requirements.



# SPEAKERS / PANELISTS

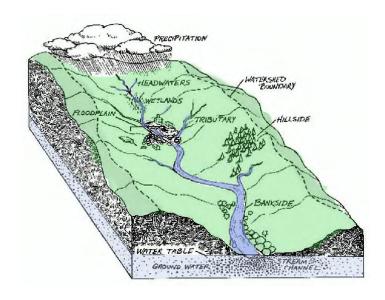
### Speakers

- Adrianna Berk, Outreach Specialist, Tetra Tech
- Mark Sievers, Environmental Engineer, Tetra Tech
- Sam Stribling, Biologist/Assessment Specialist, Tetra Tech

### Technical Panelists

- Chris Clark, DoE
- Jerry Maldonado, Section Head, DoE
- Mark Sievers, Tetra Tech
- Sam Stribling, Tetra Tech




### **Watershed Mechanics**



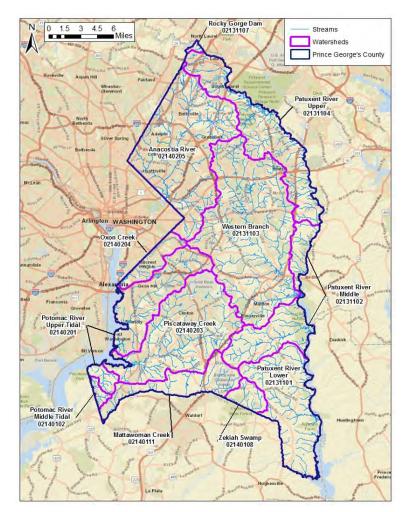
### WHAT IS A WATERSHED?

### Watersheds are like sponges and drain like funnels . . .

- Land accumulates pollutants from urban, agricultural, and other areas.
- Whatever is on the land washes into the waterways directly or via storm drains during a precipitation event in the form of runoff.
- Impervious areas contribute additional runoff and pollutants.
- Appropriate land management practices can greatly reduce polluted runoff.






### **COUNTY WATERSHEDS**

#### 2014 Local TMDL Restoration Plans

- Anacostia River
- Patuxent River Upper & Rocky Gorge Reservoir
- Mattawoman Creek
- Piscataway Creek
- PCB-Impacted Water Bodies

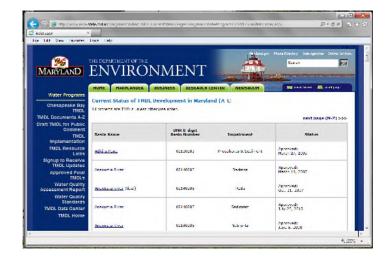
#### 2019 Local TMDL Restoration Plans

- Patuxent River, Lower & Middle
- Patuxent River





# REGULATORY OVERVIEW




### TWO REGULATORY DRIVERS

### Under the Clean Water Act

- 1. Municipal Separate Storm Sewer System (MS4) Permit
- 2. Total Maximum Daily Loads (TMDLs) = Pollution Diet

# MARYLAND DEPARTMENT OF THE ENVIRONMENT NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM MUNICIPAL SEPARATE STORM SEWER SYSTEM DISCHARGE PERMIT RT I. IDENTIFICATION Permit Number: 11-DP-3314 MD0068284 Permit Area This permit covers all stormwater discharges from the municipal separate storm sewer system (MS4) owned or operated by Prince George's County, Maryland, and all incorporated municipalities within the County except for the City of Bowie. Effective Date: January 2, 2014

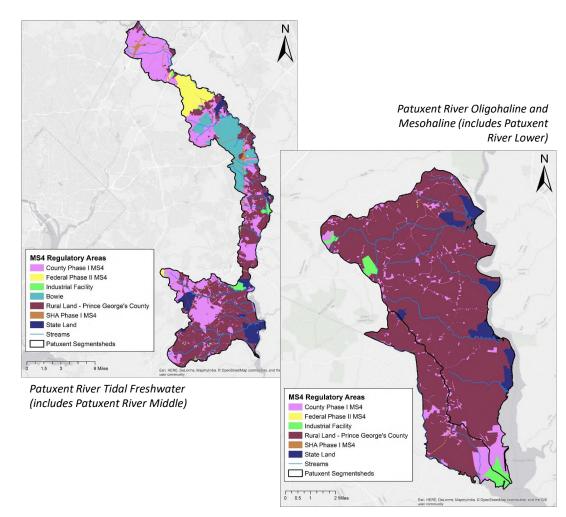


Expiration Date: January 1, 2019

### WHAT IS AN MS4?

Municipal Separate Storm Sewer System (MS4) = Conveyance system owned by a state, city, town, or other public entity that discharges to waters of the United States.








# COUNTY'S MS4 REGULATED LANDS

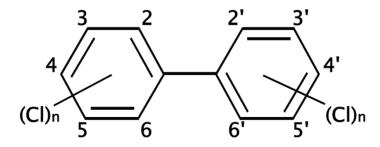
### • Excluded Properties:

- Federal
- State
- SHA
- M-NCPPC
- Board of Education
- Bowie





## **Pollutant Types**


### POLLUTANTS AND SOURCES

- Bacteria from animal waste and sewer leaks and overflows
- Nutrients and Biochemical Oxygen Demand (BOD) from sanitary waste, fertilizers, and organic material
- Sediment from construction sites, bare soils, and eroding streambanks
- Trash from littering
- Toxics (e.g., polychlorinated biphenyls [PCBs]) from legacy contaminated sites
- ALL can be contributed from urban stormwater



# POLYCHLORINATED BIPHENYLS (PCBs)

- Group of similar chemicals
  - Are man made
  - Do not readily break down in environment
  - Tend to bioaccumulate and be associated with sediment
  - Are carcinogenic



#### Uses

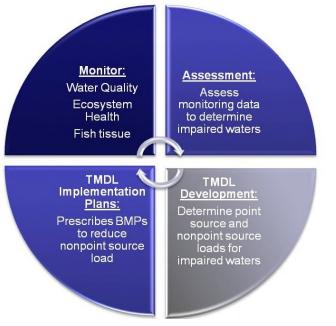
- Power transformers
- PCB fluorescent light ballasts
- Electrical insulation
- Cooling applications
- Hydraulic fluids
- Heat transfer fluid
- Lubricants
- Caulk
- Paints

#### Sources

- Contaminated upland soils/sites
- Contaminated stream sediments
- Facility point sources
- Aerial deposition

# Pollution & Impairment Limits

# WHAT IS A POLLUTION DIET/TMDL?


- TMDL = Total Maximum Daily Load (Pollution Diet)
  - Addresses a single pollutant or stressor.
  - Allocations issued to natural, point, and nonpoint sources.
- The maximum amount of a pollutant that a water body can assimilate and still meet water quality standards and designated uses.
- If TMDL is met, then the water body should meet water quality criteria for that pollutant.



### MARYLAND'S TMDL PROGRAM

- Maryland Department of the Environment (MDE) is the state's regulatory agency for TMDLs.
- Maryland is required under the Clean Water Act to list impaired waters and to take action to restore them.
- Impaired waters are identified every two years.
- A two-part process is used for restoration:
  - Establish and submit a TMDL to EPA.
  - Once TMDL is approved, develop a restoration plan.

### **TMDL Development Process**



# Restoration Approach & Strategies

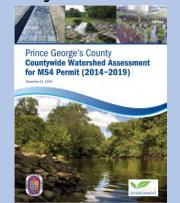
# HOW WILL WE GET THERE? RESTORATION PLANNING STEPS

## **Characterize Watershed**

- Gather existing data
- Inventory TMDLs
- Create data inventory
- Identify data gaps
- Collect additional data, if needed
- Analyze data

### Design Restoration Program

- Develop restoration strategies
- Develop restoration schedule and milestones
- Develop monitoring component and evaluation process
- Identify financial assistance needed


# Implement Restoration Plan

- Implement management strategies
- Conduct monitoring
- Conduct outreach activities



### Measure Progress and Make Adjustments (Adaptive Mgmt)

- Review and evaluate
- Share results
- Prepare annual plans
- Adjustments





### **ELEMENTS OF THESE PLANS**

- Watershed Characterization
- Water Quality Conditions
- Watershed Conditions
- Current Management Activities
- Load Reduction Targets and Existing Gap
- Strategy Development
- Restoration Activities
- Proposed Restoration Plan Estimates
- Public Outreach and Involvement
- Tracking and Adaptive Management



http://pgcdoe.net/pgcountyfactsheet/Factsheet/Default



# Current County Restoration Programs and Activities

### EXISTING COUNTY PROGRAMS

#### • Stormwater-Specific Programs

- Stormwater Management Program
- Clean Water Partnership (CWP)
- Rain Check Rebate and Grant Program
- Alternative Compliance Program
- Stormwater Stewardship Grant Program
- Countywide Green/Complete Streets Program
- Erosion and Sediment Control
- Street Sweeping, Storm Drain Maintenance/Cleaning
- Storm Drain Stenciling, Illicit Connection and Enforcement Program

#### Tree-Planting Programs

 Volunteer Tree Planting, Tree ReLeaf Grant Program, Neighborhood Design, Center, Arbor Day Every Day, Tree Planting Demonstrations

#### Public Education Programs

 Interactive Displays and Speakers for Community Meetings, Stormwater Audit Program, Master Gardeners, Flood Awareness Month











Arbor Day

# EXAMPLES OF RECENT BMPS

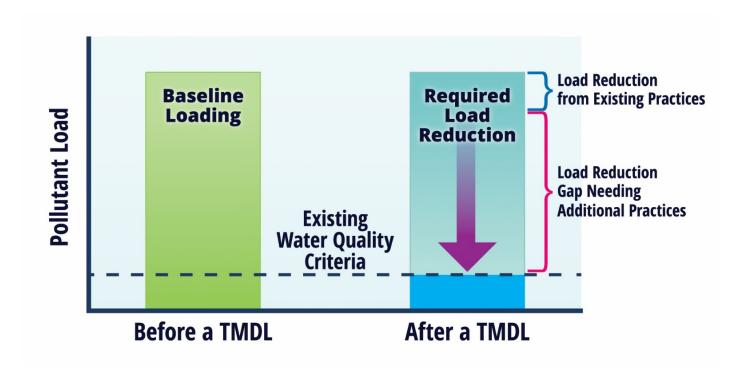








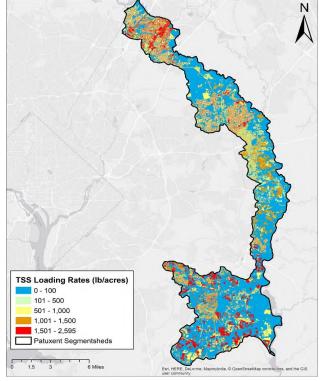






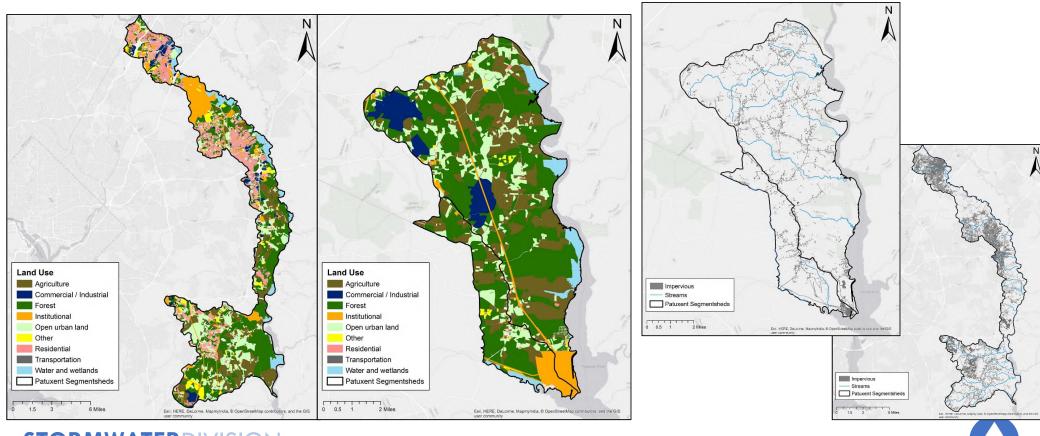



## **Load Reduction Targets**


### OVERVIEW OF LOAD REDUCTIONS






### CALCULATING POLLUTANT LOADS

- Different land uses deliver different amounts of sediment per acre to a stream during a rain event.
- Loading rates = pounds / acre
  - Depends on how much sediment is produced and how easy it runs off the land
- Highest sediment loading rates
  - Rural areas: Highest from agricultural
  - Urban areas: Highest from impervious areas



Example of sediment loading rates.

# PATUXENT LAND USES / IMPERVIOUS AREAS



**STORMWATER** DIVISION

### LOAD REDUCTION TARGETS

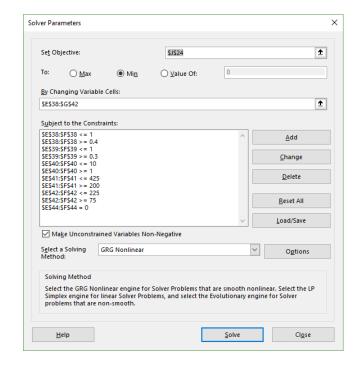
| Measure                                            | PR-Lower  |        | PR-Middle |        | PCB Segmentsheds |        |
|----------------------------------------------------|-----------|--------|-----------|--------|------------------|--------|
|                                                    | TSS       | % of   | TSS       | % of   | PCBs             | % of   |
|                                                    | (tons/yr) | Target | (tons/yr) | Target | (g/yr)           | Target |
| Baseline Load (2010)                               | 360.4     | 163.9% | 599.4     | 178.6% | 21.1             | 100.1% |
| Target Load (2025)                                 | 140.5     | 63.9%  | 263.7     | 78.6%  | 0                | 0.1%   |
| Required Load Reduction                            | 219.8     | 100.0% | 335.7     | 100.0% | 21.1             | 100.0% |
| Load Reduction to Date (2010-2018)                 | 1.7       | 0.8%   | 2.7       | 0.8%   | 1.9              | 9.2%   |
| Current Load (Credit for BMPs installed 2010-2018) | 358.7     | 163.1% | 596.7     | 177.8% | 19.2             | 90.9%  |
| Current Load Reduction Gap (2018)                  | 218.1     | 99.2%  | 333       | 99.2%  | 19.1             | 90.8%  |
| Load Removed from BMPs in Planning / Design        | 0         | 0.0%   | 82.8      | 24.7%  | 2.2              | 10.6%  |
| Initial Load Reduction Gap                         | 218.1     | 0.8%   | 250.2     | 25.5%  | 16.9             | 80.2%  |

# Proposed Strategies & Activities

### DETERMINE RESTORATION STRATEGIES

- Keep effective current and planned BMPs and programmatic initiatives.
  - Clean Water Partnership, Rain Check Rebate Program, Alternative Compliance Program.
- Find restoration opportunities.
- Engage the public.
- Assess future BMP possibilities.
  - New BMPs on County property.
  - New right-of-way BMPs through County programs.
  - Partner with public and private institutions to install BMPs.




Above: Bioretention in a right-ofway makes this a green street.

Below: Permeable pavement along parking lot.



### RESTORATION OPTIMIZATION

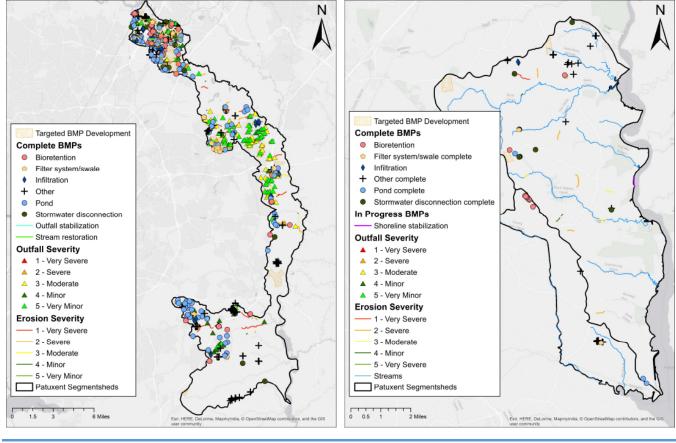
- Identified restoration strategies and potential load reductions
  - Stream restoration and outfall stabilization
  - Tree planting
  - New wet ponds and ESD practices
- Created Excel spreadsheet to meet load reduction targets at the lowest costs through different scenarios
  - Solver processes a set of constraints to meet the objectives
  - Ran different scenarios using constraints (e.g., 50-150 acres of wet ponds)
  - Identified the top 8 scenarios and reported the median in restoration plan





### RESTORATION PLAN OVERVIEW

|                                            | Measure or practice                                   | PR-Lower |             | PR-Middle        |             | PCB Segmentsheds |             |  |
|--------------------------------------------|-------------------------------------------------------|----------|-------------|------------------|-------------|------------------|-------------|--|
|                                            |                                                       |          | % of Target | TSS<br>(tons/yr) | % of Target | PCB (mg/yr) 9    | % of Target |  |
| Required load<br>reduction<br>calculations | Baseline load (2010)                                  | 360.4    | 163.90%     | 599.4            | 178.60%     | 21,091           | 100.10%     |  |
|                                            | Target load (2025)                                    | 140.5    | 63.90%      | 263.7            | 78.60%      | 14               | 0.10%       |  |
|                                            | Required load reduction                               | 219.8    | 100.00%     | 335.7            | 100.00%     | 21,078           | 100.00%     |  |
|                                            | Load reduction to date (2010-2018)                    | 1.7      | 0.80%       | 2.7              | 0.80%       | 1,939            | 9.20%       |  |
|                                            | Current load (Credit for BMPs installed 2010-2018)    | 358.7    | 163.10%     | 596.7            | 177.80%     | 19,152           | 90.90%      |  |
|                                            | Current load reduction gap (2018)                     | 218.1    | 99.20%      | 333              | 99.20%      | 19,138           | 90.80%      |  |
|                                            | Load removed from BMPs in planning / design           | 0        | 0.00%       | 82.8             | 24.70%      | 2,242            | 10.60%      |  |
|                                            | Initial load reduction gap                            | 218.1    | 0.80%       | 250.2            | 25.50%      | 16,897           | 80.20%      |  |
|                                            | Restoration Plan                                      |          |             |                  |             |                  |             |  |
| meet load<br>reduction gap                 | Stream restoration / outfall stabilization            | 82.7     | 37.60%      | 28.6             | 8.50%       | 1,330            | 6.30%       |  |
|                                            | Tree planting                                         | 1.6      | 0.70%       | 1.7              | 0.50%       | 20               | 0.10%       |  |
|                                            | New wet ponds                                         | 59.7     | 27.10%      | 136.3            | 40.60%      | 5,429            | 25.80%      |  |
|                                            | ESD practices                                         | 74.2     | 33.80%      | 83.6             | 24.90%      | 10,117           | 48.00%      |  |
|                                            | Total restoration plan                                | 218.1    | 99.20%      | 250.2            | 74.50%      | 16,897           | 80.20%      |  |
| Total Restoration Activities               |                                                       |          |             |                  |             |                  |             |  |
| Complete —                                 | Current BMPs, planned BMPs, and restoration plan BMPs | 219.8    | 100.00%     | 335.7            | 100.00%     | 21,078           | 100.00%     |  |
| implementation                             |                                                       |          |             |                  |             |                  |             |  |


STORMWATERDIVISION —



### EXISTING AND POTENTIAL BMPS

#### Maps Contain

- Locations of existing BMPs
- Areas to target BMP implementation
  - Areas of poor biological health
  - Untreated impervious areas
- Known erosion and outfall issues
  - Stream Corridor Assessments





### **BMPS CO-BENEFITS** BMPs are not just for load reductions!

- Air quality
- Biodiversity/habitat
- Education
- Energy efficiency
- Flood mitigation
- Groundwater recharge
- Property values
- Recreation







# Restoration Implementation Costs

## COST ESTIMATE FOR RESTORATION

- Approach (Programmatic & Structural BMPs)
  - Estimated costs to implement future restoration.
  - BMP costs were adapted from the University of Maryland Center for Environmental Science report Costs of Stormwater Management Practices in Maryland Counties, prepared for MDE (King and Hagan 2011). Converted to January 2018 dollars.
- Sediment for Patuxent River (Lower/Middle): \$70.5M
- PCBs for Patuxent River segmentsheds: \$782M

## **COVERING COSTS**

- How will the County pay for this work?
  - Current funds include:
    - Capital Improvement Program (CIP) budget
    - Clean Water Act fee
    - Stormwater ad valorem tax
  - Additional sources will include
    - Grants
    - Watershed restoration partners
    - Sale of municipal bonds



#### FISCAL YEAR 2020 PROPOSED BUDGET

#### **BUDGET IN BRIEF**

PRINCE GEORGE'S COUNTY GOVERNMENT WAYNE K. CURRY ADMINISTRATION BUILDING OFFICE OF MANAGEMENT AND BUDGET 1301 MCCORMICK DRIVE SUITE 4200 LARGO MARYLAND 20774





## Projected Timeline and Annual Costs

## SCHEDULE FACTORS

- Restoration plans in Anacostia River, Piscataway Creek,
   Mattawoman Creek, Rocky Gorge Reservoir, Upper Patuxent
   River, and other PCB-impacted watersheds.
- Assumed can retrofit an average of 2% of untreated impervious area per year for each watershed.
- Expect fluctuations per year depending on funding, program capacity, and availability of sites.
- Adaptive management



#### TSS IMPERVIOUS ACRE RESTORATION GOALS

|             | PR-Lower         |            |                  | PR-Middle        |            |                  |
|-------------|------------------|------------|------------------|------------------|------------|------------------|
|             |                  |            |                  |                  |            |                  |
|             | Impervious acres | TSS        | Estimated budget | Impervious acres | TSS        | Estimated budget |
| Fiscal Year | treated          | (ton/year) | (\$M)            | treated          | (ton/year) | (\$M)            |
| 2021        | 13.18            | 18         | \$1.99           | 14.06            | 21         | \$1.60           |
| 2022        | 26.37            | 36         | \$3.99           | 28.13            | 42         | \$3.20           |
| 2023        | 39.55            | 55         | \$5.98           | 42.19            | 63         | \$4.80           |
| 2024        | 52.73            | 73         | \$7.97           | 56.25            | 83         | \$6.40           |
| 2025        | 65.92            | 91         | \$9.96           | 70.31            | 104        | \$8.01           |
| 2026        | 79.10            | 109        | \$11.96          | 84.38            | 125        | \$9.61           |
| 2027        | 92.28            | 127        | \$13.95          | 98.44            | 146        | \$11.21          |
| 2028        | 105.47           | 145        | \$15.94          | 112.50           | 167        | \$12.81          |
| 2029        | 118.65           | 164        | \$17.94          | 126.56           | 188        | \$14.41          |
| 2030        | 131.83           | 182        | \$19.93          | 140.63           | 208        | \$16.01          |
| 2031        | 145.02           | 200        | \$21.92          | 154.69           | 229        | \$17.61          |
| 2032        | 158.20           | 218        | \$23.92          | 168.75           | 250        | \$19.21          |
| 2033        | 171.38           | 236        | \$25.91          | 182.81           | 271        | \$20.81          |
| 2034        | 184.57           | 254        | \$27.90          | 196.88           | 292        | \$22.42          |
| 2035        | 197.75           | 273        | \$29.89          | 210.94           | 313        | \$24.02          |
| 2036        | 210.93           | 291        | \$31.89          | 225.00           | 334        | \$25.62          |
| 2037        | 224.12           | 309        | \$33.88          | 239.06           | 354        | \$27.22          |
| 2038        | 237.30           | 327        | \$35.87          | 253.13           | 375        | \$28.82          |
| 2039        | 250.48           | 345        | \$37.87          | 267.19           | 396        | \$30.42          |
| 2040        | 263.67           | 364        | \$39.86          | 267.38           | 396        | \$30.44          |
| 2041        | 265.13           | 366        | \$40.08          |                  |            |                  |

STORMWATERDIVISION —

#### PCB IMPERVIOUS ACRE RESTORATION GOALS

| Fiscal Year | Impervious acres treated | PCBs<br>(g/year) | Estimated budget (\$M) |
|-------------|--------------------------|------------------|------------------------|
| 2021        | 138.7                    | 1.41             | \$20.42                |
| 2022        | 277.4                    | 2.82             | \$40.84                |
| 2023        | 416.1                    | 4.22             | \$61.26                |
| 2024        | 554.8                    | 5.63             | \$81.68                |
| 2025        | 693.5                    | 7.04             | \$102.10               |
| 2026        | 832.2                    | 8.45             | \$122.52               |
| 2027        | 970.9                    | 9.86             | \$142.94               |
| 2028        | 1,109.60                 | 11.26            | \$163.36               |
| 2029        | 1,248.30                 | 12.67            | \$183.78               |
| 2030        | 1,387.00                 | 14.08            | \$204.20               |
| 2031        | 1,525.70                 | 15.49            | \$224.62               |
| 2032        | 1,664.40                 | 16.90            | \$245.03               |
| 2033        | 1,803.10                 | 18.31            | \$265.45               |
| 2034        | 1,941.80                 | 19.71            | \$285.87               |
| 2035        | 2,080.50                 | 21.12            | \$306.29               |
| 2036        | 2,219.20                 | 22.53            | \$326.71               |
| 2037        | 2,357.90                 | 23.94            | \$347.13               |
| 2038        | 2,496.60                 | 25.35            | \$367.55               |
| 2039        | 2,635.30                 | 26.75            | \$387.97               |
| 2040        | 2,774.00                 | 28.16            | \$408.39               |

| Fiscal Year | Impervious acres treated | PCBs<br>(g/year) | Estimated budget (\$M) |
|-------------|--------------------------|------------------|------------------------|
| 2041        | 2,912.70                 | 29.57            | \$428.81               |
| 2042        | 3,051.40                 | 30.98            | \$449.23               |
| 2043        | 3,190.10                 | 32.39            | \$469.65               |
| 2044        | 3,328.80                 | 33.79            | \$490.07               |
| 2045        | 3,467.50                 | 35.20            | \$510.49               |
| 2046        | 3,606.20                 | 36.61            | \$530.91               |
| 2047        | 3,744.90                 | 38.02            | \$551.33               |
| 2048        | 3,883.60                 | 39.43            | \$571.75               |
| 2049        | 4,022.30                 | 40.83            | \$592.17               |
| 2050        | 4,161.10                 | 42.24            | \$612.59               |
| 2051        | 4,299.80                 | 43.65            | \$633.01               |
| 2052        | 4,438.50                 | 45.06            | \$653.43               |
| 2053        | 4,577.20                 | 46.47            | \$673.85               |
| 2054        | 4,715.90                 | 47.87            | \$694.27               |
| 2055        | 4,854.60                 | 49.28            | \$714.68               |
| 2056        | 4,993.30                 | 50.69            | \$735.10               |
| 2057        | 5,132.00                 | 52.10            | \$755.52               |
| 2058        | 5,270.70                 | 53.51            | \$775.94               |
| 2059        | 5,312.00                 | 53.93            | \$782.03               |

## **Tracking Progress**

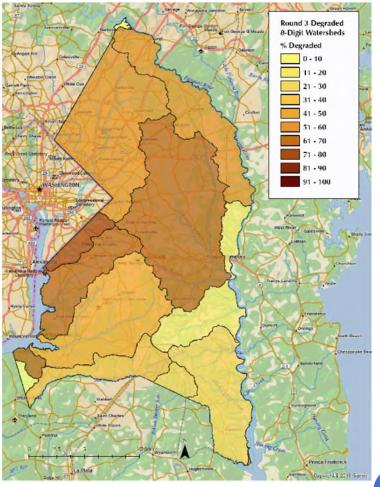
## TRACKING PROGRESS

- Three Main Activities
  - Track with required annual MS4 report
    - Document restoration BMP installation and activities such as outreach
  - Environmental monitoring
    - Biological, physical habitat, and water quality
  - Georeferenced database
    - Project locations, type, amount of imperviousness surface treated, monitoring data, etc.

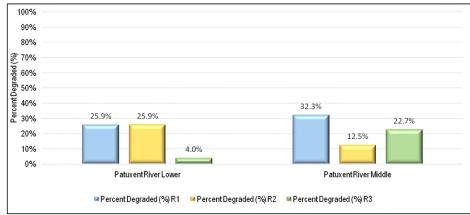


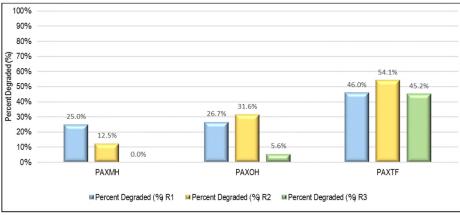


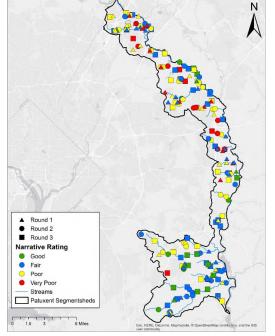
## WATER QUALITY MONITORING

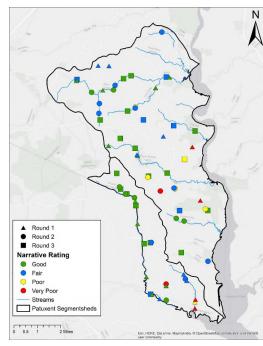

- Conducted in a priority subwatershed with restoration activities.
  - County working with MDE to move the required NPDES monitoring locations from Bear Branch (Upper Patuxent) to selected priority area.
- Currently monitor nitrate/nitrite, TKN, total phosphorus, TSS, BOD, TPH, Cu, Pb, Zn, hardness, pH, temp, and E. coli.
  - Expected to change in next MS4 permit.




# HOW WILL BIOLOGICAL MONITORING BE USED TO TRACK CHANGES?


- Round 4 biological monitoring.
- County will look for substantial reductions in "percent biological degradation".
- Setting goals for reduced percent degradation.
- Interpret monitoring and assessment results in context of...
  - Improved habitat and water chemistry conditions
  - Effectiveness of overall restoration activities (different from implementation effectiveness)


#### Watershed Status, Biological Condition (2017)

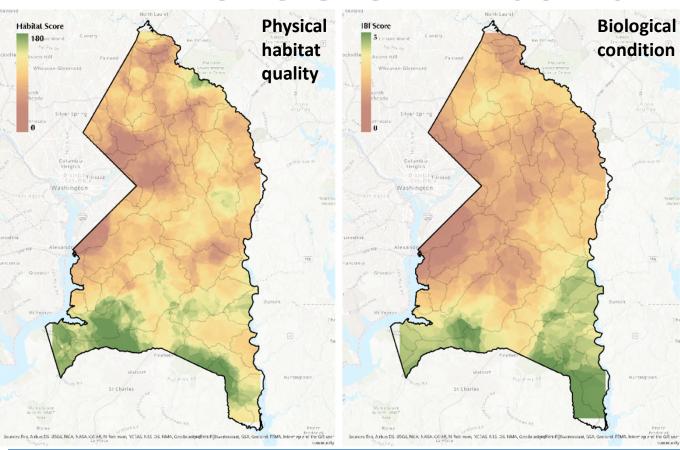



## PATUXENT BIOLOGICAL RESULTS





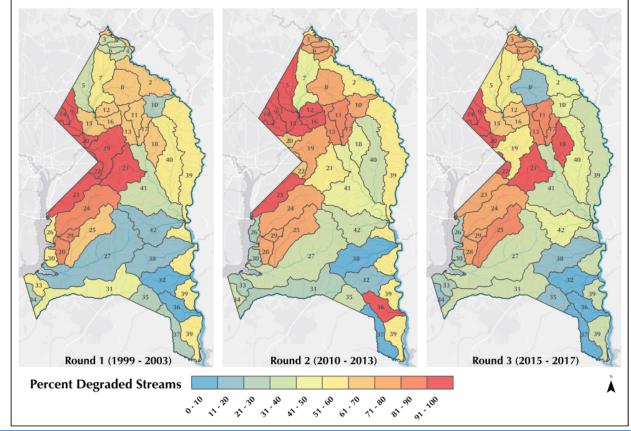





## COUNTYWIDE BIOLOGICAL RESULTS

Kriging maps show smooth transitions in ecological condition.

Here is readily apparent that better conditions are in the south/ southeastern parts of the County.

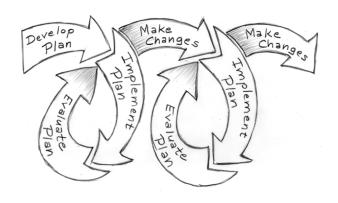

Data are from Round 3 (2015-2017).





## COUNTYWIDE BIOLOGICAL RESULTS

Percent degradation has changed over time.




#### ADAPTIVE MANAGEMENT

- Learn and change as we go.
- After strategies are in place, evaluate changes in:
  - Pollutants loads
  - Biological integrity



- Multiple bottom-line benefits.
- Determine needs for additional controls.
- Continue monitoring and evaluation.



## What Is Next?

## YOUR ROLE IN RESTORATION

- Become informed.
- Support implementation by preventing stormwater pollution.
  - Pick up after pets, plant trees, install rain barrels, leave grass clippings on lawn, don't litter, smart use of fertilizers/herbicides /pesticides, etc.
- Use County Click (<a href="http://countyclick.princegeorgescountymd.gov/">http://countyclick.princegeorgescountymd.gov/</a>).



## STAY INFORMED

- Subscribe to DoE updates on Twitter, Instagram, and Facebook for information and to get involved!
- Lots of DoE programs
  - Comprehensive Community Cleanup Program
  - Tree ReLEAF Grant Program
  - Rain Check Rebate Program
  - and more!
- DoE has speakers for meetings & interactive exhibits.

https://www.princegeorgescountymd.gov/351/ Community-Outreach









## 30-DAY COMMENT PERIOD

 Public comment period open till September 13, 2019.



- Submit Comments:
  - Tonight:
    - Comment forms (official comments)
    - Orally at hearing (unofficial comments)
  - After Tonight:
    - Email: <a href="mailto:tbhuiyan@co.pg.md.us">tbhuiyan@co.pg.md.us</a>
    - Regular mail:

Attn: Tanvir Bhuiyan
Prince George's County Government
Stormwater Management Division
Department of the Environment
1801 McCormick Drive, Suite 500
Largo, MD 20774

## QUESTIONS?

Contact:

Tanvir Bhuiyan, Ph.D., P.E. 301.636.2069
<a href="mailto:tbhuiyan@co.pg.md.us">tbhuiyan@co.pg.md.us</a>

- <a href="https://www.princegeorgescountymd.gov/261/Stormwater-Management">https://www.princegeorgescountymd.gov/261/Stormwater-Management</a>
- Comments due September 13, 2019

Thank you for attending!

Please remember to sign in if you have not done so already and turn in your comment forms!



## CONTACT US

Prince George's County Department of the Environment 1801 McCormick Drive, Suite 500 Largo, Maryland (301) 883-5810